Microbiota intestinal e síndrome metabólica: utilização terapêutica de probióticos

Autores

DOI:

https://doi.org/10.47320/rasbran.2022.1451

Palavras-chave:

Microbioma Gastrointestinal. Síndrome metabólica. Probióticos.Gastrointestinal Microbiome. Metabolic Syndrome. Probiotics

Resumo

Objetivo: Explorar as alterações encontradas na microbiota intestinal na presença de parâmetros da síndrome metabólica e os efeitos da suplementação de probióticos como medida terapêutica. Metodologia: Consiste em um estudo de revisão, realizado pela busca de artigos científicos nas bases de dados Medline e Scielo utilizando os descritores Microbioma Gastrointestinal, Síndrome Metabólica e Probióticos, publicados nos idiomas português, inglês e espanhol. Resultados: Constatou-se que a síndrome metabólica cursa com a disbiose do microbioma intestinal com aumento da proporção de alguns filos e gêneros bacterianos em detrimento de outros. Como resultado, há maior estímulo para o ganho de peso corporal, resistência à insulina, diabetes mellitus do tipo 2, dislipidemia e hipertensão arterial. A suplementação de probióticos esteve relacionada à efeitos positivos quanto à redução do peso corporal, glicemia de jejum, níveis pressóricos e alterações benéficas das subfrações do perfil lipídico. Entretanto, existem divergências nos achados quanto ao real papel da microbiota sobre o desenvolvimento da síndrome metabólica e os efeitos dos probióticos, enquanto agente de tratamento. Conclusão: A microbiota intestinal encontra-se alterada durante a síndrome metabólica, porém, mais estudos são necessários para comprovar a associação causal entre a disbiose e a gênese de parâmetros da síndrome metabólica, assim como mais experimentos randomizados são precisos para evidenciar os probióticos como medida terapêutica para a síndrome metabólica.

Palavras-chave: Microbioma Gastrointestinal. Síndrome Metabólica. Probióticos

Downloads

Não há dados estatísticos.

Biografia do Autor

Luciano Pedro da Silva Junior, Centro Universitário São Camilo

Nutricionista formado pelo Curso de Gradação em Nutrição do Centro Universitário São Camilo - SP   

Rafaela Bezerra Rovai, Centro Universitário São Camilo

Nutricionista formado pelo Curso de Gradação em Nutrição do Centro Universitário São Camilo - SP   

Joyce Josilene de Rezende, Centro Universitário São Camilo

Nutricionista formado pelo Curso de Gradação em Nutrição do Centro Universitário São Camilo - SP   

Bruna Gonçalves das Mercês, Centro Universitário São Camilo

Nutricionista formado pelo Curso de Gradação em Nutrição do Centro Universitário São Camilo - SP   

Caroline Bianca Ferreira Teixeira da Silva, Centro Universitário São Camilo

Nutricionista formado pelo Curso de Gradação em Nutrição do Centro Universitário São Camilo - SP   

Deborah Cristina Landi Masquio, Centro Universitário São Camilo

Doutora em Nutrição e Mestre em Ciências (UNIFESP), Docente do Curso de Graduação em Nutrição e do Mestrado Profissional em Nutrição do Centro Universitário São Camilo, Nutricionista integrante e pesquisadora do Grupo de Estudos da Obesidade (GEO) 

Referências

Agudelo-Ochoa GM, Giraldo-Giraldo NA, Barrera-Causil CJ, Valdés-Duque BE. Microbiota intestinal y ácidos grasos de cadena corta en pacientes críticos. Perspect Nut Hum. 2016;18( 2):205-222. DOI: https://doi.org/10.17533/udea.penh.v18n2a06

Clark JA, Coopersmith CM. Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock. 2007;28(4):384–393. DOI: https://doi.org/10.1097/shk.0b013e31805569df

The Human Microbiome Project Consortium. Structure, Function and Diversity of the Healthy Human Microbiome. Nature. 2012;486(7402):207-214. DOI: https://doi.org/10.1038/nature11234

Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-180. DOI: https://doi.org/10.1038/nature09944

Kussmann M, Van Bladeren PJ. The Extended Nutrigenomics – Understanding the Interplay between the Genomes of Food, Gut Microbes, and Human Host. Front Genet. 2011;2(21):1-13. DOI: https://doi.org/10.3389/fgene.2011.00021

Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(51). DOI: https://doi.org/10.1186/s13073-016-0307-y

Sankar SA, Lagier JC, Pontarotti P, Raoult D, Fournier PE. The human gut microbiome, a taxonomic conundrum. Syst Appl Microbiol. 2015;38(4):276‐286. DOI: https://doi.org/10.1016/j.syapm.2015.03.004

Candela M, Consolandi C, Severgnini M, Biagi E, Castiglioni B, Vitali B, et al. High taxonomic level fingerprint of the human intestinal microbiota by ligase detection reaction - universal array approach. BMC Microbiol. 2010;10(1):116. DOI: https://doi.org/10.1186/1471-2180-10-116

de Vos WM, de Vos EAJ. Role of the intestinal microbiome in health and disease: From correlation to causation. Nutr Rev. 2012;70(1):45–56. DOI: https://doi.org/10.1111/j.1753-4887.2012.00505.x

Peris-Bondia F, Latorre A, Artacho A, Moya A, D’Auria G. The Active Human Gut Microbiota Differs from the Total Microbiota. PLoS ONE. 2011;6(7):e22448. DOI: https://doi.org/10.1371/journal.pone.0022448

Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330-339. DOI: https://doi.org/10.1136/gutjnl-2015-309990

Kaur J. A Comprehensive Review on Metabolic Syndrome. Cardiol Res and Pract. 2014;2014: 943162. DOI: https://doi.org/10.1155/2014/943162

Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes.1988;37(12):1595-607. DOI: https://doi.org/10.2337/diabetes.37.12.1595

World Health Organization.Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. Geneva; 1999.

Expert panel on detection evaluation and treatment of high blood cholesterol in adults, executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). J am med assoc.2001;285(19):2486-2497. DOI: https://doi.org/10.1001/jama.285.19.2486

International Diabetes Federation. The IDF consensus worldwide definition of the Metabolic Syndrome; 2005.

Lone JB, Koh WY, Parray HA, Paek WK, Lim J, Rather IA, et al. Gut microbiome: Microflora association with obesity and obesity-related comorbidities. Microb Pathog. 2018;124(1):266-271. DOI: https://doi.org/10.1016/j.micpath.2018.08.036

Meijnikman AS, Gerdes VE, Nieuwdorp M, Herrema H. Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans, Endocr Ver.2018;39(2):133-153. DOI: https://doi.org/10.1210/er.2017-00192

Noce A, Tarantino A, Tsague CD, Vasili E, De Lorenzo A, Daniele ND. Gut Microbioma Population: An Indicator Really Sensible to Any Change in Age, Diet, Metabolic Syndrome, and Life-Style, Mediators Inflamm.2014;2014: 901308. DOI: https://doi.org/10.1155/2014/901308

Arslan N. Obesity, fatty liver disease and intestinal microbiota. World J Gastroenterol. 2014;20(44):16452-16463. DOI: https://doi.org/10.3748/wjg.v20.i44.16452

Aguilar M, Bhuket T , Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015;313(19): 1973-1974. DOI: https://doi.org/10.1001/jama.2015.4260

Ramires EKNM, Menezes RCE, Taíse GS, Silva GL, Marinho PM, SilveiraJAC. Prevalência e Fatores associados com a Síndrome Metabólica na População Adulta Brasileira: Pesquisa Nacional de Saúde – 2013. Arq. Bras. Cardiol. 2018;110(5): 455-466.

Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes and obesity: a comprehensive review. Circulation. 2016;133(2):187-225. DOI: https://doi.org/10.1161/CIRCULATIONAHA.115.018585

Sáez-Lara MJ, Robles-Sánchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials. Int J Mol Sci. 2016;17(6):928. DOI: https://doi.org/10.3390/ijms17060928

Ley R, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444(7122):1022-1023. DOI: https://doi.org/10.1038/4441022a

Kasai C, Sugimoto K, Moritani I, Tanaka J, Ova Y, Inoue H et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japonese population, as analyzed by terminal restriction fragment lenght polymorphism and next-generation sequencing. BMC Gastroenterol, 2015;15(100). DOI: https://doi.org/10.1186/s12876-015-0330-2

Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1). DOI: https://doi.org/10.1186/s12866-017-1027-1

Louis S, Tappu RM, Machado AD, Huson DH, Bischoff SC. Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing. PLoS ONE. 2016;11(2):e0149564. DOI: https://doi.org/10.1371/journal.pone.0149564

Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J et al. Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS ONE.2016;11(5):e0154090. DOI: https://doi.org/10.1371/journal.pone.0154090

Murugesan S, Ulloa-Martínez M, Martínez-Rojano H, Galván-Rodríguez FM, Miranda-Brito C, Romano MC et al. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis. 2015;37(7):1337-1346. DOI: https://doi.org/10.1007/s10096-015-2355-4

Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A Taxonomic Signature of Obesity in the Microbiome Getting to the Guts of the Matter. PLos ONE. 2014;9(1):e84689. DOI: https://doi.org/10.1371/journal.pone.0084689

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesesity-associated gut micbobiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. DOI: https://doi.org/10.1038/nature05414

Duca FA, Sakar Y, Lepage P, Devime F, Langelier B, Doré J et al. Replication of obesity and associated signaling pathways through transfer of microbiota from obese-prone rats. Diabetes. 2014;63(5):1624-1636. DOI: https://doi.org/10.2337/db13-1526

Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh P, Kaplan LM. Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Sci Transl Med. 2013;5(178): 178ra41. DOI: https://doi.org/10.1126/scitranslmed.3005687

Moran CP, Shanahan F. Gut microbiota and obesity: Role in a etiology and potential therapeutic target. Best Pract Res Clin Gastroenterol. 2014;28(4):585-597. DOI: https://doi.org/10.1016/j.bpg.2014.07.005

Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004; 101(44):15718-15723. DOI: https://doi.org/10.1073/pnas.0407076101

Halmos T, Suba. Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome. Orv Hetil. 2016;157(1):13-22. DOI: https://doi.org/10.1556/650.2015.30296

Carvalho, Saad MJ. Influence of Gut Microbiota on Subclinical Inflammation and Insulin Resistance. Mediators Inflamm. 2013. DOI: https://doi.org/10.1155/2013/986734

Dâmaso AR, de Piano A, Campos RM, et al. Multidisciplinary approach to the treatment of obese adolescents: effects on cardiovascular risk factors, inflammatory profile, and neuroendocrine regulation of energy balance.Int J Endocrinol. 2013;(1): 541032. DOI: https://doi.org/10.1155/2013/541032

Viana LV, Paula TP, Leitão CB et al. Fatores determinantes de perda de peso em adultos submetidos a intervenções dietoterápicas. Arq Bras Endocrinol Metab. 2013; 57(9): 717-721. DOI: https://doi.org/10.1590/S0004-27302013000900007

Cani DP, Delzenne NM. The gut microbiome as therapeutic target. Pharmacology & Therapeutics.2011;130(2):202-212. DOI: https://doi.org/10.1016/j.pharmthera.2011.01.012

Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 2016;15(108). DOI: https://doi.org/10.1186/s12944-016-0278-4

Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK et al. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE. 2010;5(2):e9085. DOI: https://doi.org/10.1371/journal.pone.0009085

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. DOI: https://doi.org/10.1038/nature11450

Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013; 498(7452):99-103. DOI: https://doi.org/10.1038/nature12198

Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C et al. Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. Plos One. 2013;8(8). DOI: https://doi.org/10.1371/journal.pone.0071108

Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-916. DOI: https://doi.org/10.1053/j.gastro.2012.06.031

Most J, Goossens GH, Reijnders D, Canfora EE, Penders J, Blaak EE. Gut microbiota composition strongly correlates to peripheral insulin sensitivity in obese men but not in women. Benef Microbes. 2017;8(4):557-562. DOI: https://doi.org/10.3920/BM2016.0189

Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Mehrtash A et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog. 2017;111:362-369. DOI: https://doi.org/10.1016/j.micpath.2017.08.038

Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426-436. DOI: https://doi.org/10.1136/gutjnl-2014-308778

Zhao S, Liu W, Wang J, Shi J, Sun Y, Wang W et al. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol. 2017;58(1):1-14. DOI: https://doi.org/10.1530/JME-16-0054

Schneeberger M, Everard A, Gómez-Valadés AG, Matamoros S, Ramírez S, Delzenne NM et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5(16643):1-14. DOI: https://doi.org/10.1038/srep16643

Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110(22):9066-9071. DOI: https://doi.org/10.1073/pnas.1219451110

Lestean AM, Ciocoiu M, Sava A, Costea CF, Floria M, Tarniceriu CC et al. Implications of the Intestinal Microbiota in Diagnosing the Progression of Diabetes and the Presence of Cardiovascular Complications. J Diabetes Res. 2018;2018:5205126. DOI: https://doi.org/10.1155/2018/5205126

Han JL, Lin HL. Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World J. Gastroenterol. 2014;20(47):17737-17745. DOI: https://doi.org/10.3748/wjg.v20.i47.17737

Munõz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut Microbiota and type 2 Diabetes Mellitus. Endocrinol Nutr. 2016;63(10):560-568. DOI: https://doi.org/10.1016/j.endoen.2016.07.004

Rebolledo C, Cuevas A, Zambrano T, Acuña JJ, Jorquera MA, Saavedra K. Bacterial Community Profile of the Gut MicrobiotaDiffers between Hypercholesterolemic. Biomed Res Int. 2017. DOI: https://doi.org/10.1155/2017/8127814

Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol. 2009;75(12):4175-4184. DOI: https://doi.org/10.1128/AEM.00380-09

Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA et al. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids Circ Res. 2015;117(9):817-824. DOI: https://doi.org/10.1161/CIRCRESAHA.115.306807

Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen AM. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-273. DOI: https://doi.org/10.1016/j.chom.2015.01.001

Jamar G, Santamariana AB, Dias GC, Masquio DCL, Rosso VV, Pisani LO. Relationship between fatty acids intake and Clostridium coccoides in obese individuals with metabolic syndrome. Food Res Int. 2018;113:86-92. DOI: https://doi.org/10.1016/j.foodres.2018.07.002

Shen J, Tong X, Sud N, Khound R, Song Y, Maldonado-Gomez MX. Low-Density Lipoprotein Receptor Signaling Mediates the Triglyceride-Lowering Action of Akkermansia muciniphila in Genetic-Induced Hyperlipidemia. Arterioscler Thromb Vasc Biol. 2016;36(7):1448-1456. DOI: https://doi.org/10.1161/ATVBAHA.116.307597

Honour J. The possible involvement of intestinal bacteria in steroidal hypertension. Endocrinology. 1982;110(1):285-287. DOI: https://doi.org/10.1210/endo-110-1-285

Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM et al. Gut microbiota dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331-1340. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.115.05315

Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM Jr et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2017;49(2):96-104. DOI: https://doi.org/10.1152/physiolgenomics.00081.2016

Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C et al. Alterations of the Gut Microbiome in Hypertension. Fron Cell Infec Microbiol. 2017;7(381). DOI: https://doi.org/10.3389/fcimb.2017.00381

Li J , Zhao F , Wang Y , Chen J , Tao J , Tian G et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome.2017; (5). DOI: https://doi.org/10.1186/s40168-016-0222-x

Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF et al. Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension. Hypertension. 2016;(2):469-474. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.115.06672

Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation. 2017;(10):1964-1997. DOI: https://doi.org/10.1161/CIRCULATIONAHA.116.024545

Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics. 2015;(6):187-97. DOI: https://doi.org/10.1152/physiolgenomics.00136.2014

Nutting CW , Islam S , Daugirdas JT . Vasorelaxant effects of short chain fatty acid salts in rat caudal artery. Am J Physiol. 1991; (2 Pt 2):561-567. DOI: https://doi.org/10.1152/ajpheart.1991.261.2.H561

Mortensen FV, Nielsen H, Mulvany MJ, Hessov I. Short chain fatty acids dilate isolated human colonic resistance arteries. Gut. 1990;(12):1391-1394. DOI: https://doi.org/10.1136/gut.31.12.1391

Le Chatelier E, Nielsen T, Qin J, Prifiti E, Hildebrand F, Falony G et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-546. DOI: https://doi.org/10.1038/nature12506

Hou YP, Ele QQ, Ouyang HM, Peng HS, Qun W, Li J et al. Human Gut Microbiota Associated with Obesity in Chinese Children and Adolescents. Biomed Res Int. 2017. DOI: https://doi.org/10.1155/2017/7585989

Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci. 2018;(6):701-718. DOI: https://doi.org/10.1042/CS20180087

Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;(4):810-820. DOI: https://doi.org/10.1007/s00125-018-4550-1

Org E, Blum Y, Kasela Y, Mehrabian M, Kuusisto J, Kangas AJ et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017;18(70). DOI: https://doi.org/10.1186/s13059-017-1194-2

Wanderley E.M, Ferreira V.A. Obesidade: uma perspectiva plural. Ciênc. Da Saúde Col. 2010; 15(1) 185- 194. DOI: https://doi.org/10.1590/S1413-81232010000100024

Moura I.H et al. Prevalência de hipertensão arterial e seus fatores de riso em adolescentes. Acta Paul Enferm. 2015; 28(1):81-86 DOI: https://doi.org/10.1590/1982-0194201500014

Festi D, Schiumerini R, Eusebi L H, Marasco G, Taddia M, Colecchia A. A Gut Microbiota and Metabolic syndrome. World J Gastroenterol.2014;20(43):16079 -94 DOI: https://doi.org/10.3748/wjg.v20.i43.16079

Sociedade Brasileira de Cardiologia. I Diretriz Brasileira de Diagnóstico e Tratamento da Síndrome Metabólica. Arq Bras Cardiol.2005;84(1):3-28 DOI: https://doi.org/10.1590/S0066-782X2005000700001

Delzenne,N,Neyrinck AM, Cani, PD. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb. Cell Fact.2011;(10). DOI: https://doi.org/10.1186/1475-2859-10-S1-S10

FAO/WHO. Joint FAO/WHO Expert Consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. 2001.

Butel MJ. Probiotics, gut microbiota and health. Med Mal Infect.2014;44(1): 1-8. DOI: https://doi.org/10.1016/j.medmal.2013.10.002

Minami J, Iwabuchi N, Tanaka M, Yamauchi K, Xiao JZ, Abe F, et al. Effects of Bifidobacterium breve B-3 on body fat reductions in pre-obese adults: a randomized, double-blind, placebo-controlled trial. Biosci Microbiota Food Health. 2018;37(3):67-75. DOI: https://doi.org/10.12938/bmfh.18-001

Kim J, Yun JM, Kim MK, Kwon O, Cho B. Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J Med Food. 2018; 21(5):454-461. DOI: https://doi.org/10.1089/jmf.2017.3937

Kadooka Y, Sato M, Oqawa A, Miyoshi M, Uenishi G, Oqawa H, et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br J Nutr. 2013;110(9):1696-703. DOI: https://doi.org/10.1017/S0007114513001037

Sabico S, Al-Mashharawi A, Al-Daghri NM, Yakout S, Alnaami AM, Alokajl MS, et al. Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naïve T2DM patients: a randomized clinical trial. J Transl Med. 2017;15(249). DOI: https://doi.org/10.1186/s12967-017-1354-x

Tonucci LB, Olbrich SKM, Licursi OL, Richa RSM, Duarte MHS. Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clin Nutr. 2017;36(1):85-92. DOI: https://doi.org/10.1016/j.clnu.2015.11.011

Fuentes MC, Laio T, Carrión JM, Cuñé J. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr. 2013;109(10):1866-1872. DOI: https://doi.org/10.1017/S000711451200373X

Ivey KL, Hodgson JM, Kerr DA, Thompson PL, Stoiceski B, Prince RL. The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2014;25(1):46-51. DOI: https://doi.org/10.1016/j.numecd.2014.07.012

Aovagi Y, Park S, Matsubara S, Honda Y, Amamoro R, Kushiro A, et al. Habitual intake of fermented milk products containing Lactobacillus casei strain Shirota and a reduced risk of hypertension in older people. Benef Microbes. 2017;8(1):23-29. DOI: https://doi.org/10.3920/BM2016.0135

Aihara K, Kajimoto O, Hirata H, Takahasgi R, Nakamura Y. Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J Am Coll Nutr. 2005; 24(4):257-65. DOI: https://doi.org/10.1080/07315724.2005.10719473

Stadlbauer V , Leber B , Lemesch S , Trajanoski S , Bashir M , Horvath A. Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study. PLoS One. 2015;10(10):e0141399. DOI: https://doi.org/10.1371/journal.pone.0141399

Gøbel RJ, Larsen N, Jakobsen M, Mølgaard C, Michaelsen KF. Probiotics to adolescents with obesity: effects on inflammation and metabolic syndrome. J Pediatr Gastroenterol Nutr. 2012;55(6):673-678. DOI: https://doi.org/10.1097/MPG.0b013e318263066c

Conselho Regional de Nutricionistas. Parecer Técnico CRN3 Nº12/2015 – Prescrição de Probióticos pelo Nutricionista [Internet]. 2015 [acesso 15 mar 2019].Disponível..em: http://www.crn3.org.br/Legislacao/PareceresTecnicos

Downloads

Publicado

2023-01-02

Como Citar

da Silva Junior, L. P., Rovai, R. B., de Rezende, J. J., das Mercês, B. G., da Silva, C. B. F. T., & Masquio, D. C. L. (2023). Microbiota intestinal e síndrome metabólica: utilização terapêutica de probióticos. Revista Da Associação Brasileira De Nutrição - RASBRAN, 13(1), 1–24. https://doi.org/10.47320/rasbran.2022.1451

Edição

Seção

Artigos de Revisão